Последовательный анализБольшая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
Последовательный анализ в математической статистике, способ статистической проверки гипотез, при котором необходимое число наблюдений не фиксируется заранее, а определяется в процессе самой проверки. Во многих случаях для получения столь же обоснованных выводов применение надлежащим образом подобранного способа Последовательный анализ позволяет ограничиться значительно меньшим числом наблюдений (в среднем, т.к. число наблюдений при Последовательный анализ есть величина случайная), чем при способах, в которых число наблюдений фиксировано заранее. Графическое изображение процесса последовательного анализа. Пусть, например, задача состоит в выборе между гипотезами H1 и H2 по результатам независимых наблюдений. Гипотеза H1 заключается в том, что случайная величина Х имеет распределение вероятностей с плотностью f1(x), a H2 — в том, что Х имеет плотность f2(x). Для решения этой задачи поступают следующим образом. Выбирают два числа А и В (0 < A < B). После первого наблюдения вычисляют отношение l1 = f2(x1)/f1(x1), где x1— результат первого наблюдения. Если l1 < A, принимают гипотезу H1; если l1 > B, принимают H2, если A£l1 £B, производят второе наблюдение и так же исследуют величину l2 = f2(x1) f2(x2)/f1(x1) f1(x2), где x2 — результат второго наблюдения, и т.д. С вероятностью, равной единице, процесс оканчивается либо выбором H1, либо выбором H2. Величины А и В определяются из условия, чтобы вероятности ошибок первого и второго рода (т. е. вероятность отвергнуть гипотезу H1, когда она верна, и вероятность принять H1, когда верна H2) имели заданные значения a1 и a2. Для практических целей вместо величины ln удобнее рассматривать их логарифмы. Пусть, например, гипотеза H1 состоит в том, что Х имеет нормальное распределение с a = 0,s = 1, гипотеза H2 — в том, что X имеет нормальное распределение с a = 0,6, s = 1, и пусть a1 = 0,01, a2 = 0,03. Соответствующие подсчёты показывают, что в этом случае и logln = 0.6 Поэтому неравенства и равносильны неравенствам < 0.3n 5.83 > 0.3n + 7.62 соответственно. Процесс Последовательный анализ допускает при этом простое графическое изображение (см. рис.). На плоскости (хОу) наносятся две прямые y = 0.3x 5.83 и y = 0.3x + 7.62 и ломаная линия с вершинами в точках (n, ), n = 1, 2,.... Если ломаная впервые выходит из полосы, ограниченной этими прямыми, через верхнюю границу, то принимается H2, если через нижнюю, — H1. В приведённом примере для различения H1 и H2методом Последовательный анализ требуется в среднем не более 25 наблюдений. В то же время для указанного различения гипотез H1 и H2 по выборкам фиксированного объёма потребовалось бы более 49 наблюдений.
Лит.: Блекуэлл Д., Гиршик М. А., Теория игр и статистических решений, пер. с англ., М., 1958: Вальд А., Последовательный анализ, пер. с англ., М., 1960; Ширяев А. Н., Статистический последовательный анализ, М., 1969. |
||||||||||||||||||||||||||||||||||||||||||||||
|