Многозначная логика

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
МА МБ МВ МГ МД МЕ МЁ МЖ МЗ МИ МК МЛ МН МО МП МР МС МТ МУ МХ МЦ МШ МЫ МЬ МЭ МЮ МЯ
МНА
МНД
МНЕ
МНИ
МНО
МНР

Многозначная логика, раздел математической логики, изучающий математические модели логики высказываний. Эти модели отражают две основные черты последней — множественность значений истинности высказываний и возможность построения новых, более сложных высказываний из заданных при помощи логических операций, которые позволяют также по значениям истинности исходных высказываний устанавливать значение истинности сложного высказывания. Примерами многозначных высказываний являются суждения с модальным исходом («да», «нет», «может быть») и суждения вероятностного характера, а примерами логических операций — логической связки типа «и», «или», «если..., то». В общем случае модели Многозначная логика представляют собой обобщения алгебры логики. Важно отметить, что в алгебре логики высказывания принимают только два значения истинности («да», «нет»), в связи с чем она в общем случае не может отразить всего многообразия логических построений, встречающихся на практике. При достаточно широком толковании Многозначная логика в неё иногда включают также логические исчисления.

Исторически первыми моделями Многозначная логика явились двузначная логика Дж. Буля (называемая также алгеброй логики), трёхзначная логика Я. Лукасевича (1920) и m-значная логика Э. Поста (1921). Изучение этих моделей составило важный этап в создании теории Многозначная логика Многозначная логика обладает определённой спецификой, состоящей в рассмотрении задач и подходов, возникающих при исследовании Многозначная логика с позиций математической логики, теоретической кибернетики и алгебры. Так, с позиций теоретической кибернетики, модели Многозначная логика рассматриваются как языки, описывающие функционирование сложных управляющих систем, компоненты которых могут находиться в некотором числе различных состояний; а с точки зрения алгебры, модели Многозначная логика представляют собой алгебраические системы, имеющие наряду с прикладным и чисто теоретический интерес.

  Построение моделей Многозначная логика осуществляется по аналогии с построением двузначной логики. Так, индивид, высказывания логики, разбитые на классы с одним и тем же значением истинности, приводят к понятию множества Е — констант модели, которые фактически отождествляют все индивидуальные высказывания, заменяя их соответствующими значениями истинности; переменные высказывания — к переменным величинам x1, x2, ..., которые в качестве значений принимают элементы из множества Е; логической связки — к множеству М элементарных функций (операций), которые, как и их аргументы, принимают значения из Е. Сложные высказывания, построенные из индивидуальных и переменных высказываний, а также логических связок, приводят к множеству <М> формул над М. Значение истинности из Е сложного высказывания является функцией от соответствующих значений истинности высказываний, входящих в данное сложное высказывание. В модели эта функция приписывается формуле, соответствующей данному сложному высказыванию; говорят также, что формула реализуют эту функцию. Множество формул <М> приводит к множеству [М] функций, реализуемых формулами из <М> и называемых суперпозициями над М. Множество [М] называется замыканием множества М. Задание конкретной модели Многозначная логика считается эквивалентным указанию множеств Е, М, <М> и [М]; при этом говорят, что модель порождается множеством М. Эта модель называется формульной моделью, а также m-значной логикой, где m обозначает мощность множества Е.

  Своеобразие подхода математической кибернетики к Многозначная логика состоит в рассмотрении моделей Многозначная логика как управляющих систем. Элементарные функции при этом являются элементами, производящими определённые операции, а формулы интерпретируются как схемы, построенные из элементов и также осуществляющие переработку входной информации в выходную. Такого рода управляющие системы, известные в кибернетике как схемы из функциональных элементов, широко используются в теоретических и практических вопросах кибернетики. Вместе с тем существует ряд задач логики и кибернетики, который связан с изучением соответствий между множествами М и [М] и при котором роль множества <М> несколько затушёвывается, сводясь к способу определения второго множества по первому. В этом случае приходят к другой модели Многозначная логика, которая представляет собой алгебру, элементами которой являются функции, принимающие в качестве значений, как и их аргументы, элементы из Е. В качестве операций в этих алгебрах обычно используется специальный набор операций, эквивалентный в смысле соответствий М и [М] множеству формул, построенных из функций множества М, т. е. получению сложных функций из заданных путём подстановки одних функций вместо аргументов других.

  К числу задач, характерных для формульной модели Многозначная логика, относится задача «об описании», т. е. вопрос об указании для заданного множества М2 Í [M1] всех формул из <M1>, реализующих функции из М2. Частным случаем такой задачи является важный вопрос математической логики об указании всех формул, реализующих заданную константу, что, например, для исчисления высказываний эквивалентно построению всех тождественно истинных высказываний. Пограничным вопросом между математической логикой и алгеброй, примыкающим к задаче об описании, является задача о тождественных преобразованиях. В ней при заданном множестве М требуется выделить в некотором смысле простейшее подмножество пар равных (т. е. реализующих одну и ту же функцию) формул из <М>, позволяющее путём подстановки выделенных равных формул одной вместо другой получить из любой формулы все формулы, равные ей. Аналогичное место занимает один из важнейших вопросов для Многозначная логика — т. н. проблема полноты, состоящая в указании всех таких подмножеств M1 заданного замкнутого, т. е. совпадающего со своим замыканием, множества М, для которых выполнено равенство [M1] = М, т. е. имеет место свойство полноты M1 в М. Глобальной задачей для Многозначная логика является описание структуры замкнутых классов данной модели Многозначная логика

  Характерный для теории управляющих систем вопрос о сложности этих систем естественно возникает и по отношению к формулам и функциям из Многозначная логика Типичной при таком подходе является следующая задача о сложности реализации. На множестве всех элементарных формул некоторым способом вводится числовая мера (сложность формул), которая затем распространяется на множество всех формул, например, путём суммирования мер всех тех элементарных формул, которые участвуют в построении заданной формулы. Требуется для заданной функции указать ту формулу (простейшую), которая реализует эту функцию и имеет наименьшую сложность, а также выяснить, как эта сложность зависит от некоторых свойств рассматриваемой функции. Исследуются различные обобщения этой задачи. Широкий круг вопросов связан с реализацией функций формулами с наперёд заданными свойствами. Сюда относятся задача о реализации функций алгебры логики дизъюнктивными нормальными формами и связанная с этим задача о минимизации; а также задача о реализации функций формулами в некотором смысле ограниченной глубины (т. е. такими формулами, в которых цепочка подставляемых друг в друга формул имеет ограниченную длину, такое ограничение связано с надёжностью и скоростью вычислений).

  Решения всех перечисленных задач существенно зависят от мощности множества Е и множества М, порождающего заданную модель Многозначная логика

  К числу наиболее важных примеров Многозначная логика относятся конечнозначные логики (т. е. m-значные логики, для которых m конечно). Среди них наиболее глубоко исследован случай m = 1. Важнейшим результатом здесь является полное описание структуры замкнутых классов и получение для них важной информации по задаче о сложности реализации. Установлено, что при m > 2 у конечнозначных логик возникает ряд особенностей, существенно отличающих их от двузначного случая. Таковы, например, континуальность множества замкнутых классов (при m = 2 их счётное число), особенности решения задачи о сложности реализации и ряд других. Общим результатом для конечнозначных логик является эффективное решение задачи о полноте для замкнутых классов, содержащих все функции со значениями в Е. Решение остальных проблем для конечнозначных логик продвинуто в различной степени. Особая значимость конечнозначных логик связана ещё и с тем, что они позволяют описывать работу самых различных реальных вычислительных устройств и автоматов.

  Примерами другой Многозначная логика являются счётнозначные и континуум-значные логики (т. е. такие m-значные логики, для которых мощность m является, соответственно, счётной или континуальной). Эти модели играют важную роль в математической логике, моделей теории и в математическом анализе. К Многозначная логика иногда относят и такие алгебры функций, в которых запас операций несколько отличается от указанного. Как правило, это достигается путём сужения описанного запаса или введения в операции некоторых функций рассматриваемой Многозначная логика

 

  Лит.: Яблонский С. В., Гаврилов Г. П., Кудрявцев В. Б., Функции алгебры логики и классы Поста, М., 1966; Яблонский С. В., Функциональные построения в k-значной логике, «Тр. Матем. института АН СССР», 1958, т. 51, с. 5—142.

  В. Б. Кудрявцев.

 

Так же Вы можете узнать о...


Измитский залив (Izmit korfezi), залив Мраморного моря у северо-западных берегов Малой Азии (Турция).
Каменев Сергей Сергеевич [4(16).4.1881, Киев, — 25.
Киргиз-кайсаки, киргиз-казаки, распространённое в дореволюционной литературе название казахов.
Корабельный устав Военно-Морского Флота Союза ССР, устав, регламентирующий обязанности должностных лиц всех военных кораблей, порядок несения повседневной службы и жизни на корабле.
Куркино, посёлок городского типа, центр Куркинского района Тульской области РСФСР.
Литофильные элементы (от лито... и греч. phileo — люблю, имею склонность), химические элементы горных пород.
Мартынов Николай Васильевич [р. 13(26).4.1910, Москва], советский государственный деятель.
Мишустин Евгений Николаевич [р. 9(22).2.1901, Москва], советский микробиолог, член-корреспондент АН СССР (1953), заслуженный деятель науки РСФСР (1961).
Натрия силикаты, натриевые соли кремниевых кислот, например Na2SiO3; см.
Ованес Тлкуранци (гг. рождения и смерти неизвестены), армянский поэт 14—15 вв.
«Панчатантра» (санскр. — «Пятикнижие»), памятник санскритской повествовательной литературы (около 3—4 вв.
Плинсбахский ярус (от названия дер. Плинсбах, Pliensbach, в ФРГ) второй сверху ярус нижнего отдела юрской системы [см.
Проводящие пути, группы тесно расположенных нервных волокон в центральной нервной системе, объединённых общностью морфологического строения и функций.
Рейд (воен.) Рейд (от англ. raid — налёт, набег), проникновение подвижных групп (танковых, механизированных, кавалерийских, партизанских) в тыл противника с целью нанесения ему потерь, разрушения важных объектов (мостов, аэродромов, железных дорог, линий связи, складов, баз снабжения и т.
Сан-Томе (São Tome), город на северо-востоке острова в Гвинейском заливе Атлантического океана; столица Республики и Принсипи.